

Subtropical estuarine carbon budget under various hydrologic extremes and implications on the lateral carbon exchange from tidal wetlands

(Hongming Yao, Paul A. Montagna, Michael S. Wetz, Cory J. Staryk & Xinping Hu. 2022, Water Research. https://doi.org/10.1016/j.watres.2022.118436)

Science Question: Elucidating carbon budget and its variability in poorly studied subtropical coast that spans a wide hydrologic spectrum, from extreme drought to storm-induced flooding.

Analysis: Under various hydrologic extremes ranging from drought to flooding, a mass balance model from field data was constructed for carbon fluxes and their variabilities in four estuaries along the northwestern Gulf of Mexico (nwGOM) coast over a four-year period (2014 – 2018).

Results:

- Lateral exchanges of TOC and DIC reach 4.5 ± 5.7 and 8.9 ± 1.4 mol·C·m⁻²·yr⁻¹, accounting for 86.5% and 62.7% of total TOC and DIC inputs into these estuaries, respectively;
- A relatively high regional CO₂ efflux $(4.0 \pm 0.7 \text{ mol} \cdot \text{C} \cdot \text{m}^{-2} \cdot \text{yr}^{-1})$, two times the average value in North American coastal estuaries;
- Storm or hurricane-induced flooding can elevate CO_2 efflux by 2-10 times in short periods of time. Flood following a drought also increases lateral TOC exchange (from -3.5 \pm 4.7 to 67.8 \pm 17.6 mmol·C·m⁻²·d⁻¹) but decreases lateral DIC exchange (from 28.9 \pm 3.5 to -7.1 \pm 7.6 mmol·C·m⁻²·d⁻¹).

Significance:

- Estuarine carbon fluxes are highly dynamic based on hydrologic conditions;
- Lateral exchanges from tidal wetlands dominate the total carbon loading to the nwGOM estuaries;
- Annual CO₂ emission from the nwGOM estuaries is twice as much as the average value from the North American estuaries;
- Interpretation of estuarine carbon budget requires greater spatiotemporal coverage.

Funding: NOAA's NOS National Center for Coastal Ocean Science (#NA15NOS4780185) and NSF Chemical Oceanography Program (OCE #1654232, OCE #1760006). HY was funded in part by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515110828) during the development of this manuscript

Figure 1. Observed and modeled carbon fluxes in four nwGOM estuaries, shaded areas denote the 95% confidence level based on locally weighted least squares regression (loess). (unit: *mmol·C·m*⁻²·*d*⁻¹)

Figure 2. Observed estuarine air-water CO₂ fluxes in North American coast. (unit: $mol \cdot C \cdot m^{-2} \cdot yr^{-1}$)

Figure 3. A schematic representation of integrated carbon fluxes in the nwGOM estuaries. (a) riverine DIC input; (b) riverine TOC input; (c) lateral DIC exchange between tidal wetlands and estuaries; (d) lateral TOC exchange between tidal wetlands and estuaries; (e) air-water CO₂ flux; (f) pelagic and benthic NEM; (g) sediment TOC burial; (h) DIC export to the open ocean; (i) TOC export to the open ocean; (j) carbon fixation by tidal wetland; (k) CO₂ evasion from tidal wetland; (l) carbon sequestration within tidal wetland. # denotes values are based on the literature data; * denotes values dependent on other fluxes. (unit: mol·C·m⁻²·yr⁻¹)